Causal Inference
2 - Good Research Practice

Benjamin Elsner
benjamin.elsner@ucd.ie

1/37

Motivation

(Actually) doing empirical research is hard! Projects often...
> involve multiple collaborators
> stretch over many months/years
> require combinations of multiple datasets

> ...as well as multiple programming languages (R, Stata,
RMarkdown, LaTeX, Python)

All these are major stumbling blocks to good research
» Difficult to spot errors

> Inconsistent and inefficient processing of information between
collaborators

» Research is often not reproducible

2/37

Motivation

Most good journals require researchers to post their data and
code online!

But how to produce good research? We will learn about several
tools:

» Automation of code
> Version control

> Organization of code
> Project management

This lecture is based on Gentzkow & Shapiro (2014). More
comprehensive guides can be found elsewhere on the web.

3/37

Automation
Each empirical paper is (partly) the result of a piece of software.
Codes are called in sequence. Typical research project:
> Open Stata

> Click on Stata code 1 (data_clean.do) reads in the data and
cleans them

> Click on Stata code 2 (analysis.do) performs the main analysis

> Click on Stata code 3 (graphs_tables.do) produces graphs
and tables

> Or generate the tables manually
> Tables and Graphs are manually input into MS-Word
> Paper is sent to journal...

Problems: inconsistency, potential for errors, lack of reproducibility!

> In what sequence should we execute the programs?

Automation

Rules from Gentzkow & Shapiro (2014)
1. Automate everything that can be automated.

2. Write a single script that executes all code from
beginning to end.

What this means in practice:

> Anyone should be able to produce the entire paper in one
click!

5/37

Automation

Gentzkow & Shapiro (2014) recommend
> using a typesetting system such as IATeXor RMarkdown

» creating a single windows shell that executes all programs
in sequence

---- rundirectory.bat ----
stattransfer export_to_csv.stc
statase -b mergefiles.do
statase -b cleandata.do
statase -b regressions.do
statase -b figures.do

pdflatex tv_potato.tex

6/37

Automation

If this is too extreme, ensure the following:
» Your code has a logical structure
> In R/Stata work with a master file and subfiles

> All output has to be created by R/Stata and saved in
appropriate formats

> |ATEXor RMarkdown automatically inputs graphs and figures

This would reduce the task to two clicks. But programming a shell
is easy, so why not reduce it to one click?!

Do as | say, not as | do...

7/37

Automation — Bottom Line

Automation is relatively easy

It pays huge dividends

Regular review of the process is recommended

Costs:
» Convincing collaborators...
» Self-control

8/37

Version Control

The (in)famous “date-initial method”
> New versions of code will get the date and initial stamp

cleandata_022113.do cleandata_022613.do regressions.log
cleandata_022113a.do cleandata_022613_jms.do regressions_022413.do
chips.csv tvdata.dta regressions_022713_mg.do

regressions_022413 . log

9/37

Version Control

Problematic about the “date-initial method”
> No track of version history (despite “1.0, 1.1, 2.0 etc”)
> Which versions of code produce the final results?!
» Who changed that variable definition and why?!
> Why is this effect no longer significant?
> You overwrote on DropBox what | had written yesterday...

No piece of software on any of your devices has been written
with the date-initial method!

10/37

USE VERSION CONTROL!

Version control gets you around this problem

Basic idea:

> Most recent version and all previous versions are in a
central repository

> Collaborators work locally but check versions in and out of
the repository

The tool for version control is git

11/37

Version Control

What you need

> a git repository available for free with github, gitlab, bitbucket
and others

> connect your computer with the repository (via a virtual key)
> collaborators who live in the 21st century
> Frustration tolerance at the start...

12/37

Version Control

Basic workflow with git
> pull the latest version from the repository (i.e. check out)
> change the code
» commit the changes to the repository (i.e. give a timestamp)
> push the changes to the repository (i.e. check out)

git allows authors to simultaneously work on code
» it highlights conflicts between versions
> merging two versions is easy

13/37

Version Control

Your directory will look much better...

rundirectory.bat tvdata.dta
cleandata.do regressions.do

chips.csv regressions.log

Main advantages:
> transparency: know what was changed, when and by whom
> consistency: can go back to any prior version;

> easier collaboration: avoid forking conflicts; resolving
conflicts is easy

> replicability

14/37

Version Control

Git syncs all files, even pdf and all the auxiliary LaTeX files
(.synctex.gz, .aux, .bbl,...)

But these cannot be overwritten on other computers because
they don’t consist of code

Put only code under version control. Add a file “.gitignore” to
the directory, with the following content:

*.aux

*.bbl

*.bcf

*.blg

* pdf

*.log

*.out
*run.xml
*latexmk
*synctex.gz

15/37

Version Control

git works with the command line. | recommend using an
interface:

> Windows: Tortoise git
> Windows: Github Desktop
» Mac: Fork

Setting up git is a pain
> but once it works, it works well
» there are lots of online tutorials

16/37

Version Control — Bottom Line

YOU NEED TO USE VERSION CONTROL!
> | want to see your version history in all assingments from now!

Recommendations
> Hang in there! It is tricky to set up and unusual in its usage
> But it will pay off massively
> You will only need basic features of git

17/37

Organizing Directories

Motivation: it is not uncommon that all files are put in a single
directory

---C:/tv_and_potato/---
chips.csv mergefiles.do tv_potato_submission.pdf
cleandata.do regressions_alt.de tv_potato.tex

extractOB.xls regressions_alt.log tv.csv

figl.eps regressions.do tvdata.dta

fig2.eps regressions.log rundirectory.bat

figures.do tables . txt export_to_csv.stc
Problems:

» Number of files expands over time
> Difficult to keep track
> Folders are not easily portable

18/37

Organizing Directories

Goal(s)

> Replication should work on any computer (given adequate
software & power)

> Your code and folders should be geared towards replication

» Ultimately: paper should be reproducible on another
machine in one click!

What is needed?
> Aninternally consistent, logical folder structure

> Separation of folders for inputs, outputs and temporary
files

19/37

Organizing Directories

Better?

---C:/build---
/input

extractOB. xls

/code
rundirectory.bat
eXport_to_csv.stc

mergefiles.do

Joutput

tvdata.dta

/temp
chips.csv

tv.csv

---C:/analysis---
/input
tvdata.dta (link to C:/build/eutput)

/code
rundirectory.bat
regressions.do

regressions_alt.do

/output
figl.eps
fig2.eps

tables. txt

/temp
regressions.log

regressions_alt.log

Inputs, outputs, code and tempfiles are clearly separated!

20/37

Organizing Directories

Test before submitting a paper:
> Create a shell that runs all the code in sequence
> Copy input and code files into a new directory
> Does the entire paper get reproduced?

Bottom line: Find a directory structure that suits your workflow
and allows for reproducibility

21/37

Abstraction

Problems with writing code
> Difficult to understand when revisiting after months/years
» Redundancies (same procedures used over again)

> Inconsistencies (e.g. same procedure used differently in
different files)

Abstraction can help with these problems

22/37

Abstraction

Example: we want to generate a leave-out-mean at the
state-level

egen total_pc_potate = total(pc_potato), by(state)
egen total_obs = count(pc_potato), by(state)

gen leaveout_state_pc_potato = (total_pc_potato - pc_potato) / (total_obs - 1)

Now we want to have the leave-out means at different levels of
aggregation (county, MSA).

> One solution: copy-paste the same code three times,
replacing “state”

> Problem 1: messy code

> Problem 2: change in the formula requires changing three
parts of the code; this creates potential for error

23/37

Abstraction

Solutions
> Within a code/project, write programs (Stata) or functions
(R)
> Across projects, write ado files (Stata) or functions (R) that
can be accessed by multiple sources
» Whatever you do, put it under version control!

24/37

Abstraction
Example for a Stata program

program leaveout_mean

syntax, invar(varname) outvar(name) byvar (varname)
tempvar tot_invar count_invar

egen ‘tot_imvar’= total(‘invar’), by(‘byvar’)

egen ‘count_invar’s count(‘invar’), by(‘byvar’)

gen ‘outvar’ = (‘tot_invar’ - ‘invar’) / (‘count_invar’ - 1)

end

Afterwards we call the program

leaveout_mean, invar(pc_potate) outvar(leaveout_state_pc_potato) byvar(state)
leaveout_mean, invar(pc_potate) outvar(leaveout_metro_pc_potato) byvar(metre)

leaveout_mean, 1nvar(hh_potato) outvar(leaveout_metro_hh_potato) byvar(metro)

25/37

Abstraction

Rules of Gentzkow & Shapiro (2014)
> Abstract to eliminate redundancy
> Abstract to improve clarity
> Otherwise, don’t abstract

26/37

Soft-coding

An important source of error is hard-coding. Look at this

use "C:/project/data/mydatafile.dta"™, clear
gen demand=price”™ (—-2.5)

regress demand weather, cluster(state)

zave "C:/project/data/newfile.dta"™

otn s L B

The demand elasticity is hard-coded. As is the path. As is the level
of clustering standard errors.

27/37

Soft-coding

Better:
8
10 global directory "C:/project/"
11 globkal clustervar "state"
12 local priceelas=2.5
13
14 use "Z{directorv}/data/mydatafile.dta™, clear
15 gen demand=price” ‘priceeslas'
1€ regress demand weather, cluster (£{clustervarl)
17 save "S{directoryl/data/newfile.dta", replace
18

> Can easily transfer the analysis to a different directory
> Keep things like the cluster variable consistent

> Ensures we use the same demand elasticity throughout the
code

28/37

Documentation

Gentzkow & Shapiro (2014) have a whole chapter on code
documentation. Read it. Do it!

29/37

Project Management

All research projects are complex:
> They involve many tasks to be completed in logical order
> They often involve many collaborators
> (Seqguences of) tasks may need to be revisited

This creates two challenges
> Keeping track of tasks
» Communication between collaborators

30/37

Email is not a Project Management Tool

Email is messy

Very hard to keep track of to-do-lists

Difficult to assign tasks

Difficult to revisit (discussions of) old tasks

Things slip through the cracks

31/37

Use Project Management Tools

Kanban-based platforms:
> Trello
> Asana
> Monday.com

Team communication platform: Slack

All of them have free plans and sync across devices!

32/37

Use Project Management Tools

Kanban-based platforms:
> Trello
> Asana
> Monday.com

Team communication platform: Slack

All of them have free plans and sync across devices!

33/37

Use Project Management Tools

@ [@ Boards
Example board ¥ Privat

To-do list Doing Done Ideas for later
Find literature to support main Create new indices for cognitive skills Downlozd dataset + Eine Karte hinzufiigen
hypothesis

+ Eine weitere Karte hinzufigen @ | Clean data
Create descriptive statistics table

+ Eine weitere Karte hinzufigen &
Descriptive graphs

Main regression table

+ Eine weitere Karte hinzufiigen @

34/37

Use Project Management Tools

Put a bit of thought into how you work

Develop a system you trust and that works for you!

The payoff is almost immediate.

One (of the very few) self-help books | can recommend: Getting
Things Done by David Allen

35/37

Other Things | Recommend

Use a Notetaking Software/App:
> Evernote is great
> Alternatives: Google Keep, OneNote

36/37

References |

Gentzkow, Matthew, & Shapiro, Jesse M. 2014. Code and Data for the Social Sciences: A Practitioner's Guide. University
of Chicago.

37/37

	References

